Southampton

Modelling anomalies in the land surface phenology of Europe using inter-annual variations in climatic drivers

Maria Villarin-Claveria¹, Victor Rodriguez-Galiano^{2,3}

Human Geography, University of Seville, Seville, Spain
Physical Geography, University of Seville, Seville, Spain
Geography and Environment, University of Southampton, Southampton, United Kingdom

Objectives

- I. To assess regression trees for modelling water demand.
- II. To reveal new insights into the socio-demographic and building-urban drivers of water demand in Sevilla city at a census track level.
- III. To compare the performance and graphical outputs of CART Regression trees and Random Forest.

Study area

Census tract is a geographic region defined for the purpose of taking a census.

Census tracts represent the smallest territorial unit for which population data are available in many countries

Modelling methods: Regression trees and Random Forest

Why Regression Trees?

- Ability to learn complex patterns, considering nonlinear relationships between explanatory and dependent variables.
- Generalisation ability, hence applicable to incomplete or noisy databases.
- Integration of different types of data in the analysis due to the absence of assumptions about the data used (e.g. normality).
- Interpretability of results, since RT allows obtaining patterns for a better explanation of a given phenomenon, showing the most important variables and their threshold values.

Explanatory variables (I)

Explanatory variable	Units					
Domestic water consumption (DC)	L/(inhab. day)					
Population under 15 (P<15)	%					
Population between 15 and 34 (P1534)	%					
Population between 35 and 64 (P3564)	%					
Population over 65 (P>65)	%					
Youth index (YI)	%					
Aging index (AI)	% %					
Foreigners (FRG)						
Average age of population (AAP)	years					
Average cadastral value (ACV)	€					
Average built surface area (ABSA)	m^2					
Weighted average height (WAH)	number of floors					
Average gross density (AGD)	inhab./m ²					
Average net density (AND)	inhab./m ² (constructed)					
Household size (HS)	inhab./household					
Residential density (RD)	inhab./(household ×100m ²)					

P<15	P1534	P3564	P>65	AAP	FRG	YI	AI	WAH	ACV	ABSA	AGD	AND	HS	RD
-0.398**	-0.207***	0.04	0.360**	0.453**	0.93*	-0.287***	0.369 ^{**}	0.132**	0.420***	0.197**	0.02	-0.308**	-0.329***	-0.479**

Explanatory variables (II)

Regression Tree (RT) Model.

Household size (HS); Average cadastral value (ACV); Residential density (RD); Population under 15 (P<15); Average age of population (AAP)

Random Forest(RF) Model.

Household size (HS); Residential density (RD); Average age of population (AAP); Average built surface area (ABSA); Weighted average height (WAH); Population under 15 (P<15);

CART vs Random Forest (I)

CART vs Random Forest (II)

CART vs Random Forest (III)

Conclusions

- I. Domestic water consumption in Sevilla city is driven mainly by the household size and residential density, and to a lower extent by the age of population, and built surface area.
- II. The relations between water consumption and the socio-demographic and building-urban predictors are non-linear.
- III. The regression tree models (both CART and RF), multivariate, spatially nonstationary and non-linear machine learning approach, outperformed multivariate linear models.
- IV. RF showed a better performance than CART trees, explaining 54% of the variance with a RMSE value equal to 18.96 l.